Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins.

نویسندگان

  • Kaoru Fukami-Kobayashi
  • Yoshio Tateno
  • Ken Nishikawa
چکیده

The bacterial LacI/GalR family repressors such as lactose operon repressor (LacI), purine nucleotide synthesis repressor (PurR), and trehalose operon repressor (TreR) consist of not only the N-terminal helix-turn-helix DNA-binding domain but also the C-terminal ligand-binding domain that is structurally homologous to periplasmic sugar-binding proteins. These structural features imply that the repressor family evolved by acquiring the DNA-binding domain in the N-terminal of an ancestral periplasmic binding protein (PBP). Phylogenetic analysis of the LacI/GalR family repressors and their PBP homologues revealed that the acquisition of the DNA-binding domain occurred first in the family, and ligand specificity then evolved. The phylogenetic tree also indicates that the acquisition occurred only once before the divergence of the major lineages of eubacteria, and that the LacI/GalR and the PBP families have since undergone extensive gene duplication/loss independently along the evolutionary lineages. Multiple alignments of the repressors and PBPs furthermore revealed that repressors and PBPs with the same ligand specificity have the same or similar residues in their binding sites. This result, together with the phylogenetic relationship, demonstrates that the repressors and the PBPs individually acquired the same ligand specificity by homoplasious replacement, even though their genes are encoded in the same operon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structures of the Escherichia coli transcription activator and regulator of diauxie, XylR: an AraC DNA-binding family member with a LacI/GalR ligand-binding domain

Escherichia coli can rapidly switch to the metabolism of l-arabinose and d-xylose in the absence of its preferred carbon source, glucose, in a process called carbon catabolite repression. Transcription of the genes required for l-arabinose and d-xylose consumption is regulated by the sugar-responsive transcription factors, AraC and XylR. E. coli represents a promising candidate for biofuel prod...

متن کامل

Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression

LacI/GalR transcription regulators have extensive, non-conserved interfaces between their regulatory domains and the 18 amino acids that serve as 'linkers' to their DNA-binding domains. These non-conserved interfaces might contribute to functional differences between paralogs. Previously, two chimeras created by domain recombination displayed novel functional properties. Here, we present a synt...

متن کامل

Comparative genomics and evolution of regulons of the LacI-family transcription factors

DNA-binding transcription factors (TFs) are essential components of transcriptional regulatory networks in bacteria. LacI-family TFs (LacI-TFs) are broadly distributed among certain lineages of bacteria. The majority of characterized LacI-TFs sense sugar effectors and regulate carbohydrate utilization genes. The comparative genomics approaches enable in silico identification of TF-binding sites...

متن کامل

Modular, Multi-Input Transcriptional Logic Gating with Orthogonal LacI/GalR Family Chimeras

In prokaryotes, the construction of synthetic, multi-input promoters is constrained by the number of transcription factors that can simultaneously regulate a single promoter. This fundamental engineering constraint is an obstacle to synthetic biologists because it limits the computational capacity of engineered gene circuits. Here, we demonstrate that complex multi-input transcriptional logic g...

متن کامل

Multiple Co-Evolutionary Networks Are Supported by the Common Tertiary Scaffold of the LacI/GalR Proteins

Protein families might evolve paralogous functions on their common tertiary scaffold in two ways. First, the locations of functionally-important sites might be "hard-wired" into the structure, with novel functions evolved by altering the amino acid (e.g. Ala vs Ser) at these positions. Alternatively, the tertiary scaffold might be adaptable, accommodating a unique set of functionally important ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2003